## Application Note 129 Heart Rate Variability

## Analyses: Statistical Measures

## SDANN <br> SDNN - index

The SDANN is the standard deviation of all the 5-minute NN interval (normal RR) means (i.e., the standard deviation of 288 NN means), while the SDNN-index is the mean of all the 5-minute of NN interval standard deviations during the 24 -hour period (i.e., the mean of 288 NN standard deviations),

SDANN will be calculated in one of two methods, based on whether the R-R interval is calculated using Find Cycle or the Find Rate.

## RR interval calculated using Find Cycle

To obtain SDANN and SDNN-index, first obtain the mean heart rate at 5-minute intervals. The following steps outline the procedure.

1. On the acquired data, set measurements for Mean and Stddev on the R-R interval channel.

2. Choose Analysis > Find Cycle.

| Analysis | Display | Script MP150 | Window |
| :--- | :--- | :--- | :--- |
| Recently Used |  |  |  |
| Histogram... |  |  |  |
| Autoregressive Modeling... |  |  |  |
| Nonlinear Modeling... |  |  |  |
| Power Spectral Density... |  |  |  |
| AR Time-Frequency Analysis... |  |  |  |
| FFT... |  |  |  |
| DWT... |  |  |  |
| Principal Component Analysis... |  |  |  |
| Independent Component Analysis... |  |  |  |
| Find Cyde... | CtrI+F |  |  |
| Find Next Cycle | CtrI+E |  |  |
| Find All Cycles | CtrI + R |  |  |
| Find Rate... |  |  |  |

3. In the Cycles/Peaks tab, select "fixed time intervals".

- Select starting time $=$ "Start first interval at 0.0000 seconds"
- Set interval width $=5$ minutes or 300 seconds.


4. Click on Selection Tab. Set Left edge to "Previous interval +0.000000 seconds"

5. Click on the Output Tab. Select "Display measurements as channels in a graph" as the output option.

6. Choose Analysis > Find All Cycles.

- The following graph displays the Mean and Stddev of the R-R intervals every 5 minutes.


Find All Cycles output for Steps 2-6
7. Set a measurement box to Stddev assigned to the Mean channel and assign the Mean measurement to the Stddev channel.


The SDANN consists of the standard deviation of all 5-minute RR interval means.


The SDNN-index consists of the mean of all 5-minute RR interval standard deviations.
8. To obtain SDANN and SDNN-index, use the I-beam tool to highlight valid 5-min intervals. (Example on next page.)


SDANN and SDNN-index for ECG signals captured in real-time.

## RMSSD

NOTE: A BIOPAC Basic Script for computing RMSSD, SDSD and pNN50 statistics is available for download at: http://www.biopac.com/ScriptDetails.asp?ID=1045

The RMSSD is the RMS of the Successive Difference between adjacent R-R intervals. Referring to the figure below, the successive differences would be:

$$
\begin{aligned}
& R R_{1}-R R_{2}=D_{1} \\
& R R_{2}-R R_{3}=D_{2} \\
& R R_{3}-R R_{4}=D_{3} \\
& \ldots \\
& R R_{n-1}-R R_{n}=D_{n-1}
\end{aligned}
$$

These differences are then used in the RMS equation:

$$
R M S S D=\sqrt{\frac{\sum_{i=1}^{i=n-1} D_{i}{ }^{2}}{n-1}}
$$

Where $\mathrm{i}=$ interval index
$\mathrm{n}=$ number of total intervals
$\mathrm{n}-1=$ number of interval differences


Successive R-R intervals used for the calculation of the RMSSD

The following page offers a suggested procedure for calculating the RMSSD using the R-R interval derived for the SDANN-index/SDNN-index metrics.

## Deriving the RMSSD metric through the RR interval waveform

1. Create a separate R-R Interval graph from the source ECG waveform.
2. Select the ECG channel.
3. Choose Analysis > Find Rate and select the Output tab.
4. Choose Interval (sec) as the Function.
5. Check the "Put result in new graph" and click OK.

AcqKnowledge - Analysis - Find Rate
Source channel: CH1, ECG

$\Gamma$ Output reset events
V Put result in new graph

6. Switch the new R-R interval graph view to Chart mode.

7. Hide or delete the R-R graph TIME channel and expand the Interval view using Display >Autoscale Horizontal.
8. Convert the R-R interval graph from seconds to msec. Choose Analysis > Waveform Math and enter parameters as shown in the following figure.

- Use the channel containing the RR interval as the Source and Destination.
- Set operand to multiply (*)
- Set "K" value to 1000 and click OK.

AcqKnowledge - Transformation - Waveform Math


K: 1000.000000
V Transform entire wave $\square$ Cancel
9. Double-click on the vertical axis units label; rename units to "msec" and click OK.

10. Duplicate the R-R Interval channel using: Edit > Duplicate Waveform.

11. Select a measurement of $\square$
12. Set the line style for each channel to dot plot using: Display $>$ Show $>$ Dot Plot
13. Use the Zoom tool $Q$ to display the first few samples of each channel.

14. Select the top interval channel, highlight a section of $\mathbf{2}$ samples (Delta $S=2$ ) then use: Edit >Cut to remove.
15. Select the duplicate interval channel, highlight a section of 3 samples (Delta $S=3$ ) then use: Edit >Cut to remove.


The resulting graph should contain two R-R waveforms separated by one beat.
(Check by choosing Select > All with Delta $S$ selected for both channels)
16. Revert back to a line plot style on both R-R Interval channels: Display > Show > Line Plot
17. Use the Expression transformation to take the square of the difference between the two channels.

- Choose Transform > Expression.
- Enter SQR(CH2-CH3) into the Expression field.
- Destination: New
- Click OK.

NOTE: Your original and duplicate R-R Interval channel number assignments may vary from that used in the above and example formula. If so, use the correct channel numbers in your expression.

18. Vertically and horizontally Autoscale the resultant SQR waveform and choose: Edit > Select All.

19. Set a measurement to:
 to get the mean of the square of the differences.
20. Set a measurement to Calculate to extract the square root of the mean:

- Source 1 = the Mean
- $\quad$ Operand $=^{\wedge}(\exp )$
- Source $2=0.5$ (Constant)
- Press OK.


21. Result: RMSSD = Calculate


The SDSD is the Standard Deviation of the Successive Difference between adjacent R-R intervals. Referring to Figure 1 below, the successive differences would be:

$$
\begin{aligned}
& R R_{1}-R R_{2}=D_{1} \\
& R R_{2}-R R_{3}=D_{2} \\
& R R_{3}-R R_{4}=D_{3} \\
& \ldots \\
& R R_{n-1}-R R_{n}=D_{n-1}
\end{aligned}
$$

These differences are then used in the SDSD equation:

$$
S D S D=\sqrt{\frac{\sum_{i=1}^{i=n-1}\left(D_{i}-D_{\text {mean }}\right)^{2}}{n-1}}
$$

Where:
$\mathrm{i}=$ interval index
$\mathrm{n}=$ number of total intervals
$\mathrm{n}-1=$ number of interval differences

$$
D_{\text {mean }}=\frac{1}{n-1} \sum_{i=1}^{i=n-1} D_{i}
$$



Figure 1 - Successive RR intervals used for the calculation of the SDSD

## Deriving the SDSD metric:

1. Select the duplicate-channel R-R interval graph used in the RMSSD section in Part 1. (For easier viewing, hide the SQR channel used in the previous section by selecting and choosing Alt+Click.)
2. Use the Expression tool to just take the difference between the two channels: (original - duplicate).

- Choose Transform > Expression.
- Enter (CH2-CH3) into the Expression field. (Or enter your channel numbers containing the original and duplicate R-R interval. These may vary from the example)
- Destination: New
- Click OK.


3. Change the Difference vertical scale units from "Volts" to "msec" to reflect the R-R interval channel units. (Click on the Difference channel's units label to open the units text dialog.)
4. Set the Difference waveform to a SC Stddev $\vee$ measurement, and then choose: Edit > Select All. Result:

SDSD = Stddev

## NN50 count

pNN50
The NN50 count is the number of pairs of adjacent NN intervals differing by more than 50 ms . This value can be derived using a waveform created by the difference between an R-R interval graph and a 1-sample shifted copy of the interval.

1. Use the R-R Difference Waveform created in Step 2 of Page 2 to calculate the NN50 count metric.

2. Perform the following operations:

- Duplicate the R-R Difference Waveform: Edit > Duplicate Waveform
- Select all of the duplicate waveform: Edit > Select All
- Take the absolute value: Transform > Math Functions > Abs

The resulting waveform should resemble the image below:


Abs of the R-R Difference waveform
3. Now apply a Threshold transform to count how many peaks are > 50 msec . (Transform > Math Functions > Threshold)


AcqKnowledge - Transformation - Thresho...

4. After autoscaling, a waveform showing a series of spikes with a maximum value of 1 when a threshold value exceeds 50 msec and 0 otherwise. The following image is an expansion of a region.

5. Select the Threshold channel

- Set the first top row measurement for Area.
- Choose Edit > Select All.
- The Area measurement result will reflect the number of peaks $>50 \mathrm{msec}$.

$$
\begin{gathered}
\frac{\text { NN50-count = Area }}{\qquad \text { Area }}=145.00000 \\
\text { Peak count after applying Area measurement }
\end{gathered}
$$

6. Set another measurement to Delta $\mathbf{S}$ to obtain the total number of samples.

$$
\begin{gathered}
\begin{array}{|c|}
\hline \text { Delta } S \\
\text { pNN50 }=\mathbf{1 4 5} / \mathbf{1 4 4 1} * \mathbf{1 0 0}=\mathbf{1 0 . 0 6} \%
\end{array}
\end{gathered}
$$

## Application Note 129- Part 3

Heart Rate Variability

## Geometric Measures

Geometric measures are most applicable to long term recordings (24 hours preferred), where any histogram of values follows a normal distribution. A comprehensive overview of the metric is provided in Guidelines: Heart Rate Variability, European Heart Journal (1996) 17, 354-381, http://eurheartj.oxfordjournals.org/content/17/3/354.full.pdf

HRV triangular index
TINN - Triangular Interpolation of NN
Using a discrete scale, the measurement is approximated by:
(Total number of NN intervals) / (Height of the histogram of all NN intervals using 7.8125 ms bins)
Note, most experience has been obtained with a bin length of approximately 8 ms (precisely $7.8125 \mathrm{~ms}=1 / 128$ seconds), which corresponds to the precision of current commercial equipment (Guidelines: Heart Rate Variability). The following steps outline a procedure to determine the index.

1. Obtain the ECG waveform.

2. Duplicate this waveform in another channel and select that channel.
3. Choose Analysis > Find Rate and set the output function to Interval.
4. Click OK to output the R-R intervals to a new channel.

5. Autoscale and select the R-R interval channel.

6. Convert the graph from an amplitude scale of seconds to milliseconds using Transform > Waveform Math.

- Set Interval channel as Source 1 and Destination
- Set operand to * and Source 2 to K.
- Set K value to 1000 and click OK.


7. Autoscale the waveform and change scaling units to "msec". (Click on "Seconds" label to launch units text dialog.)

8. If the first few data points are suspected to be corrupted with artifact, use the Selection tool to highlight as many points as necessary, then remove those points from the waveform using: Edit > Cut.

- Use the Zoom $Q$ tool to accurately check data quality at the start of the graph. (Zoom back after checking.)

9. Choose Edit > Select All to highlight the entire waveform.


- Set another measurement for Samples or Delta S. (Will be used for the triangular index calculation $\rightarrow$ the total number of NN intervals.)

10. Set a measurement to Calculate and establish the following parameters:

- Source 1 = Row A: Col 1 (or corresponding location of P-P measurement)
- $\quad$ Operand $=/$
- Source $2=\mathrm{K}$, Constant
- Constant $=7.8125$
- Click OK.


The Calculate value renders the number of "7.8125" msec bins for the Histogram.
11. Choose Analysis > Histogram.

- Enter the measurement value derived from Calculate and select "Autorange."
- Click OK.



Histogram output from R-R interval example
12. Using the I-Beam tool, highlight the area between the point of initial increase on the bell curve distribution and the end of the decrease (a return to a baseline or flat-line) to encompass the curve maximum.

13. Within the Histogram graph:

- $\quad$ Set the initial first row measurement to Max.
- Set another measurement to Calculate.

14. For Calculate, set the following parameters:

- Source 1 = K, Constant
- $\quad$ Operand $=/$
- Source 2 = Row A: Col 1 (or corresponding location of Max measurement).
- Constant $=$ Samples or Delta S value from source graph (= 1016502).

(Total number of NN intervals) / (Height of the histogram of all NN intervals using 7.8125 ms bins) Triangular index $=1016502$ / $40002=25.41$

